

 63.44 ± 0.22

63.74±0.23

63.59±0.11

76.62±0.11

77.28±0.08

 $.12 \pm 0.09$

77.

 53.47 ± 0.36

54.62±0.23

 $53.94{\pm}0.37$

Mowst-GCN (joint)

Mowst-GCN

Mowst*-GCN

Mixture of Weak and Strong Experts on Graphs

Hanqing Zeng^{1,*}, Hanjia Lyu^{2,*}, Diyi Hu³, Yinglong Xia¹, and Jiebo Luo² ²University of Rochester ³University of Southern California

- □ The worst-case cost of Mowst-GNN or Mowst*-GNN is similar to that of a vanilla GNN.

*Equal contribution

Main Results

□ Mowst(*) outperforms all other baselines under the same number of layers and hidden dimensions. □ The decoupling of the self-features and neighbor structures, along with the denoising effect of the weak expert are generally beneficial.

	Flickr	ogbn-products	ogbn-arxiv	Penn94	pokec	twitch-gamer
MLP	46.93 ± 0.00	$61.06^\dagger \ \pm 0.08$	$55.50^{\dagger} \pm 0.23$	$73.61^{\ddagger} \pm 0.40$	$62.37^{\ddagger} \pm 0.02$	$60.92^{\ddagger} \pm 0.07$
GAT	52.47 ± 0.14	OOM	71.58 ± 0.17	$81.53^{\ddagger} \pm 0.55$	$71.77^{\ddagger} \pm 6.18$	$59.89^{\ddagger} \pm 4.12$
GPR-GNN	$\textbf{53.23} \pm 0.14$	72.41 ± 0.04	71.10 ± 0.22	$81.38^{\ddagger} \pm 0.16$	$\underline{78.83}^{\ddagger} \pm 0.05$	$61.89^{\ddagger} \pm 0.29$
AdaGCN	48.96 ± 0.06	69.06 ± 0.04	$\textbf{58.45} \pm 0.50$	74.42 ± 0.58	55.92 ± 0.35	61.02 ± 0.14
GCN	53.86 ± 0.37	$75.64^{\dagger} \pm 0.21$	$71.74^{\dagger} \pm 0.29$	82.17 ± 0.04	76.01 ± 0.49	62.42 ± 0.53
GCN-skip	52.98 ± 0.00	-	69.56 ± 0.00	76.58 ± 0.53	$\textbf{73.46} \pm 0.04$	61.05 ± 0.23
GraphMoE-GCN	$\textbf{53.03} \pm 0.14$	73.90 ± 0.00	$71.88^{\dagger\dagger} \pm 0.32$	81.61 ± 0.27	$\textbf{76.99} \pm 0.10$	62.76 ± 0.22
Mowst(*)-GCN	54.62 ± 0.23	$\textbf{76.49} \pm 0.22$	72.52 ± 0.07	83.19 ± 0.43	77.28 ± 0.08	63.74 ± 0.23
	(+0.76)	(+0.85)	(+0.64)	(+1.02)	(+0.29)	(+0.83)
GIN	53.71 ± 0.35	-	69.39 ± 0.56	82.68 ± 0.32	53.37 ± 2.15	61.76 ± 0.60
Mowst(*)-GIN	55.48 ± 0.32	-	71.43 ± 0.26	84.56 ±0.31	76.11 ± 0.39	64.32 ± 0.34
	(+1.77)		(+2.04)	(+1.88)	(+22.74)	(+2.56)
GIN-skip	52.70 ± 0.00	-	71.28 ± 0.00	80.32 ± 0.43	$\textbf{76.29} \pm 0.51$	64.27 ± 0.25
Mowst(*)-GIN-skip	53.19 ± 0.31	-	71.79 ± 0.23	81.20 ± 0.55	79.70 ±0.23	64.91 ± 0.22
	(+0.49)		(+0.51)	(+0.88)	(+3.41)	(+0.64)
GraphSAGE	53.51 ± 0.05	<u>78.50</u> [†] ±0.14	$71.49^{\dagger} \pm 0.27$	76.75 ± 0.52	$\textbf{75.76} \pm 0.04$	61.99 ± 0.30
GraphMoE-SAGE	52.16 ± 0.13	77.79 ± 0.00	$\textbf{71.19} \pm 0.15$	77.04 ± 0.55	76.67 ± 0.08	63.42 ± 0.23
Mowst(*)-SAGE	53.90 ± 0.18	79.38 ± 0.44	$\underline{72.04} \pm 0.24$	$\textbf{79.07} \pm 0.43$	$\textbf{77.84} \pm 0.04$	$\underline{64.38} \pm 0.14$
	(+0.39)	(+0.88)	(+0.55)	(+2.03)	(+1.33)	(+1.05)

Mowst can substantially enhance the performance of state-of-the-art heterophilous GNNs like H2GCN, with the help of a relatively simple expert such as a standard MLP.

GCN Mowst(*)

 H_2GC

Mowst(*)-

Future Work

□ Multi-expert (*e.g.*, Mixture of progressively stronger experts, hierarchical mixture)

We are grateful to Jingyang Lin, Dr. Wei Zhu, and Dr. Wei Xiong for their constructive suggestions. Luo was supported in part by NSF Award #2238208.

Weak and strong experts in non-graph domains (*e.g.*, NLP, computer vision)

Meta Al

	Penn94	pokec	twitch-gamer
1	82.17 ± 0.04	$\textbf{76.01} \pm 0.49$	62.42 ± 0.53
-GCN	83.19 ± 0.43	77.28 ± 0.08	63.74 ± 0.23
	(+1.02)	(+0.29)	(+0.83)
N	82.71 ± 0.67	80.89 ± 0.16	65.70 ± 0.20
-H ₂ GCN	83.39 ± 0.43	$\textbf{83.02} \pm 0.30$	66.03 ±0.16
	(+0.68)	(+2.13)	(+0.33)

□ **Specialization via Data Splitting.** Both Mowst and Mowst* adapt their expert collaboration based on the confidenceweighted loss across various graphs.

□ See Appendix for the empirical findings on denoised fine-tuning.

Acknowledgments

Code Availability: https://github.com/facebookresearch/mowst-gnn